Isolated DC/DC LLC resonant GaN converter for motor sport applications

The study investigates an ISOP LLC resonant converter using GaN transistors for high-efficiency, high–power-density dc-dc conversion. It also analyzes module mismatches and employs a genetic algorithm to optimize losses, transformer volume, and efficiency

Go to project

Advanced Model Predictive Control for Electrical Drives and Power Electronics Converters

Advanced Model Predictive Control for Electrical Drives and Power Electronics Converters

Go to project

Fault Detection and Location in Power Converters with a High Number of Switches using Deep Learning

This research topic explores novel approaches in fault diagnostic techniques using DL for power converters with a large number of switches, like multilevel converters, to develop efficient and effective approaches for improved overall system reliability.

Go to project

SiC MOSFET-Based Power Supply for high-current applications

Proper design of electrical converters is essential for applications requiring precise current control, especially in high-current (tens of kiloamperes) systems used for generating strong magnetic fields in plasma confinement or particle acceleration.

Go to project

Modeling, Control and Stability of Power Electronics Based Power Systems

Each power converter in modern power grids has local intelligence, control and filters: the complex interactions between them require advanced stability assessment methods and global control design methods.

Go to project

Design and implementation of an Electronic Load for Emulating Frequency-Dependent Impedances in the Vertical Stabilization Coils of the Divertor Tokamak Test Facility

The study will focus on investigating Power Hardware-in-the-Loop (PHIL) and Load Emulators (LE) for high-current applications. It will aim to identify DUT testing requirements and analyze gaps in literature.

Go to project

Multilevel Converters for High Power Applications and Medium Voltage Drives

Multilevel Converters for High Power Applications and Medium Voltage Drives

Go to project

Design control and implementation of an LLC resonant converter using GaN technology

Design and implementation of a ISOP LLC resonant converter to test, at a real application system level, the use of GaN devices versus traditional technology and to investigate novel solutions for drivers, overcurrent protections and control

Go to project

Innovative methods for impedance estimation using artificial intelligence

Develop an LSTM-based model to estimate grid impedance dynamically. Learned nonlinear grid behavior from operational data without explicit equations. Improves converter control stability and fault resilience.

Go to project